A yeast protein that bidirectionally affects nucleocytoplasmic transport.
نویسندگان
چکیده
We have identified a temperature-sensitive mutant of Saccharomyces cerevisiae (npl3) that accumulates polyadenylated RNA in the nucleus at 37 degrees C, as judged by in situ hybridization. The strong nuclear signal is not simply due to increased cytoplasmic turnover of mRNA, as reincubation at 37 degrees C with an RNA polymerase inhibitor shows no diminution in the in situ signal. Over several hours at 37 degrees C, the average poly(A) tail length increases and a characteristic ultrastructural alteration of the nucleoplasm occurs. Cloning and sequencing indicate that the corresponding gene is NPL3/NOP3, which codes for a nucleolar/nuclear protein implicated in protein import into the nucleus (Bossie et al. (1992). Mol. Biol. Cell 3, 875-893) and in rRNA maturation (Russell and Tollervey (1992). J. Cell Biol. 119, 737-747). NPL3 includes bipartite RNA recognition motifs (RRM) and a Gly-Arg repeat domain, as in several nucleolar proteins. A point mutation adjacent to one of the RRM has been identified in the ts copy of the gene. Although this protein is not concentrated in nuclear pores, NPL3 is implicated in both import and export from the nucleus. Judging from the site of the npl3 mutation and since the block in RNA export can be detected prior to an obvious nuclear import defect in npl3, the defect in RNA export may be primary. Since other mutants that interrupt RNA export do not block protein import, the NPL3 protein itself appears to be implicated in protein import.
منابع مشابه
Two African swine fever virus proteins derived from a common precursor exhibit different nucleocytoplasmic transport activities.
African swine fever virus (ASFV), a large icosahedral deoxyvirus, is the causative agent of an economically relevant hemorrhagic disease that affects domestic pigs. The major purpose of the present study was to investigate the nuclear transport activities of the ASFV p37 and p14 proteins, which result from the proteolytic processing of a common precursor. Experiments were performed by using yea...
متن کاملThe Fission Yeast Ran Gtpase Is Required for Microtubule Integrity
The microtubule cytoskeleton plays a pivotal role in cytoplasmic organization, cell division, and the correct transmission of genetic information. In a screen designed to identify fission yeast genes required for chromosome segregation, we identified a strain that carries a point mutation in the SpRan GTPase. Ran is an evolutionarily conserved eukaryotic GTPase that directly participates in nuc...
متن کاملThe core protein of hepatitis C virus is imported into the nucleus by transport receptor Kap123p but inhibits Kap121p-dependent nuclear import of yeast AP1-like transcription factor in yeast cells.
The core protein of hepatitis C virus (HCV) is a major component of the viral nucleocapsid. The HCV core protein includes nuclear localization signal-like sequences and has various effects on cellular metabolism, playing roles, for example, in the regulation of transcription, apoptosis, and transformation. To examine the possibility of an effect of the core protein on nucleocytoplasmic transpor...
متن کاملThe yeast Apq12 protein affects nucleocytoplasmic mRNA transport.
An important step in mRNA biogenesis is the export of mRNA from the nucleus to the cytoplasm. In this work, we provide evidence that the previously uncharacterized gene APQ12 functions in nucleocytoplasmic mRNA transport in Saccharomyces cerevisiae. First, apq12delta strains manifest 3' hyperadenylated mRNA similar to other previously characterized RNA export mutants. Second, bulk poly(A)+ RNA ...
متن کاملMutations in the YRB1 gene encoding yeast ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects.
We identified two temperature-sensitive (ts) mutations in the essential gene, YRB1, which encodes the yeast homolog of Ran-binding-protein-1 (RanBP1), a known coregulator of the Ran GTPase cycle. Both mutations result in single amino acid substitutions of evolutionarily conserved residues (A91D and R127K, respectively) in the Ran-binding domain of Yrb1. The altered proteins have reduced affinit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 108 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1995